Notation 1. Throughout this exposition, \mathcal{L} will denote a first order language, T will denote an \mathcal{L} -theory, \mathcal{M} will denote an \mathcal{L} structure with universe M, and $\varphi(\overline{x}, \overline{y})$ will be an \mathcal{L} -formula in n+m free variables, where $|\overline{x}| = n$ and $|\overline{y}| = m$. For any ordinal α (including natural numbers), let 2^{α} denote the set of binary strings of length α , i.e. functions from α to the set $2 = \{0, 1\}$, and let $2^{<\alpha}$ denote the set of binary strings of length less than α . In this context, $2^{<\alpha}$ will be called a tree, ordered under \preceq , and an element of 2^{α} might be called a branch.

Definition 2. For an ordinal α , we say $\Gamma_T(\varphi, \alpha)$ holds if there exists a model $\mathcal{M} \models T$, and a height- α binary tree of m-tuples in M, i.e. a function $f: 2^{<\alpha} \to M^m$, such that for any branch in the tree $\tau \in 2^{\alpha}$, the collection of formulas

$$\Sigma_{\tau} = \{ \varphi(\overline{x}, f(\tau | \beta)) \mid \beta < \alpha, \tau(\beta) = 0 \} \cup \{ \neg \varphi(\overline{x}, f(\tau | \beta)) \mid \beta < \alpha, \tau(\beta) = 1 \}$$

is satisfiable in \mathcal{M} .

Proposition 3. If $n \in \mathbb{N}$, then there is a finite \mathcal{L} -formula that says "there is a witness to $\Gamma_T(\varphi, n)$ ", which I will denote by $\gamma(\varphi, n)$. This can be seen as the formula

$$\exists_{\sigma \in 2^{< n}} \overline{y}_{\sigma} \bigwedge_{\tau \in 2^{n}} \exists \overline{x} \bigwedge_{k < n} \varphi(\overline{x}, \overline{y}_{\tau \mid k}) \leftrightarrow \tau(k) = 0,$$

where $\leftrightarrow \tau(k) = 0$ is shorthand for either the formula or its negation depending on whether $\tau(k) = 0$.

Definition 4. Let I be a linear order. We say that $B_T(\varphi, I)$ holds if there exists a model $\mathcal{M} \models T$, and sequences $\langle \overline{a}_i \mid i \in I \rangle$ in M^n and $\langle \overline{b}_i \mid i \in I \rangle$ in M^m such that for all $i, j \in I$,

$$\mathcal{M} \models \varphi(\overline{a}_i, \overline{b}_j) \Leftrightarrow i < j.$$

Lemma 5. If for all $k \in \mathbb{N}$, treating k as the linear order with k elements, $B_T(\varphi, k)$ holds, then $B_T(\varphi, I)$ holds for all linear orders I.

Proof. Let I be an arbitrary linear order. Define the language

$$\mathcal{L}' = \mathcal{L} \cup \{c_{i,k} \mid i \in I, k < n\} \cup \{d_{i,k} \mid i \in I, k < m\},\$$

an expansion by constants. For notation's sake, let \overline{c}_i denote the tuple $c_{i,0},\ldots,c_{i,n-1}$ and let \overline{d}_i denote the tuple $d_{i,0},\ldots,d_{i,m-1}$. Let T' be the theory

$$T \cup \{\varphi(\overline{c}_i, \overline{d}_j) \mid i, j \in I, i < j\} \cup \{\neg \varphi(\overline{c}_i, \overline{d}_j) \mid i, j \in I, i \ge j\}.$$

We will show that T' is consistent. Let Σ be a finite subset of T'. For some finite $I' \subseteq I$, we have

$$\Sigma \subseteq T \cup \{ \varphi(\overline{c}_i, \overline{d}_j) \mid i, j \in I', i < j \} \cup \{ \neg \varphi(\overline{c}_i, \overline{d}_j) \mid i, j \in I', i \ge j \}.$$

We can enumerate I' as $i_1 < i_2 < \cdots < i_\ell$. By assumption, there is a model $\mathcal{M} \models T$ and sequences $\overline{a}_1, \ldots, \overline{a}_\ell$ and $\overline{b}_1, \ldots, \overline{b}_\ell$ such that for all $1 \le k, l \le \ell$,

$$\mathcal{M} \models \varphi(a_k, b_\ell) \Leftrightarrow k < \ell.$$

Consider the \mathcal{L}' -structure \mathcal{M}' built from \mathcal{M} by realizing $\overline{c}_{i_k}, \overline{d}_{i_k}$ for $1 \leq k \leq \ell$ as \overline{a}_k and \overline{b}_k respectively, and for $i \in I \setminus I'$, realizing $\overline{c}_i, \overline{d}_i$ as \overline{a}_0 and \overline{b}_0 respectively.

Let $\theta \in \Sigma$. If $\theta \in T$, then $\mathcal{M}' \models \theta$ since $\mathcal{M} \models \theta$, and \mathcal{M}' is the same as \mathcal{M} on \mathcal{L} symbols. Otherwise, $\theta \in \{\varphi(\overline{c}_i, \overline{d}_j) \mid i, j \in I', i < j\} \cup \{\neg \varphi(\overline{c}_i, \overline{d}_j) \mid i, j \in I', i \geq j\}$. Then $\mathcal{M}' \models \theta$ since

$$\mathcal{M}' \models \varphi(\overline{c}_{i_k}, \overline{d}_{i_{k'}}) \Leftrightarrow \mathcal{M} \models \varphi(\overline{a}_k, \overline{b}_{k'}) \Leftrightarrow k < k' \Leftrightarrow i_k < i_{k'}.$$

Thus, Σ is satisfiable and so T' is consistent.

Lemma 6. Any finite subset of a tree is contained in a finite subtree of that tree.

Lemma 7. If $\Gamma_T(\varphi, k)$ holds for all $k \in \mathbb{N}$, then $\Gamma_T(\varphi, \alpha)$ holds for all ordinals α .

Proof. Suppose $\Gamma_T(\varphi,k)$ holds for all $k \in \mathbb{N}$. Let α be any ordinal. Define the language

$$\mathcal{L}' = \mathcal{L} \cup \{d_{\sigma,k} \mid \sigma \in 2^{<\alpha}, k < m\} \cup \{c_{\tau,k} \mid \tau \in 2^{\alpha}, k < n\},\$$

an expansion by constants. For notation's sake, let \overline{d}_{σ} denote the tuple $d_{\sigma,0},\ldots,d_{\sigma,m-1}$ and let \overline{c}_{τ} denote the tuple $c_{\tau,0},\ldots,c_{\tau,n-1}$. Let T' be the theory

$$T \cup \{\varphi(\overline{c}_{\tau}, \overline{d}_{\tau 1 \beta}) \mid \tau \in 2^{\alpha}, \tau(\beta) = 0\} \cup \{\neg \varphi(\overline{c}_{\tau}, \overline{d}_{\tau 1 \beta}) \mid \tau \in 2^{\alpha}, \tau(\beta) = 1\}.$$

If we show that T' has a model \mathcal{M} , then $\Gamma_T(\varphi, \alpha)$ holds, as witnessed by the tree $\sigma \mapsto \overline{c}_{\sigma}^{\mathcal{M}}$. Thus, it suffices to show that T' is consistent. By compactness, it sufficies to show that every finite subset of T' is consistent, so let Σ be a finite subset of T'. For some finite $X \subseteq 2^{\alpha}$ and $A \subseteq \alpha$ we have

$$\Sigma \subseteq T \cup \{ \varphi(\overline{c}_{\tau}, \overline{d}_{\tau \mid \beta}) \mid \tau \in X, \tau(\beta) = 0, \beta \in A \} \cup \{ \neg \varphi(\overline{c}_{\tau}, \overline{d}_{\tau \mid \beta}) \mid \tau \in 2^{\alpha}, \tau(\beta) = 1, \beta \in A \}.$$

Let $Y = \{\tau \mid \beta \mid \beta \in A\}$. By lemma 6, Y is contained in a subtree of $2^{<\alpha}$. That means there is a map $g: 2^{<\ell} \to 2^{<\alpha}$ such that Y is contained in the image of g. Choose $\mathcal{M} \models T$ and a tree $f: 2^{<\ell} \to M^m$ as a witness to $\Gamma_T(\varphi, \ell)$.

We will now build a model $\mathcal{M}' \models T'$ starting with \mathcal{M} . For any $\sigma \in Y$, interpret \overline{d}_{σ} in \mathcal{M}' as $f(\rho)$, where $\rho \in 2^{<\ell}$ such that $g(\rho) = \sigma$. Next, let $\tau \in X$. Consider $\rho' = \bigcup \{\sigma \in 2^{<\ell} \mid g(\sigma) \prec \tau\}$. Choose some $\rho \in 2^{\ell}$ extending ρ' . Since f witnesses $\Gamma_T(\varphi, \ell)$, we have

$$\Delta = \{ \varphi(\overline{x}, f(\rho \mid k)) \mid k < \ell, \rho(k) = 0 \} \cup \{ \neg \varphi(\overline{x}, f(\rho \mid k)) \mid k < \ell, \rho(k) = 1 \}$$

is satisfiable in \mathcal{M} . Then interpret \overline{c}_{τ} in \mathcal{M}' as a witness to Δ . Interpret all other constants arbitrarily. If $\beta \in A$, then there is a $\sigma \in 2^{<\ell}$ such that $\tau \upharpoonright \beta = g(\sigma)$. We have interpreted \overline{c}_{τ} such that

$$\mathcal{M}' \models \varphi(\bar{c}_{\tau}, f(\rho | |\sigma|)) \Leftrightarrow \tau(\beta) = 0.$$

Furthermore, $f(\rho | |\sigma|) = f(\sigma) = d_{g(\sigma)}^{\mathcal{M}'} = d_{\tau | \beta}^{\mathcal{M}'}$, so we have

$$\mathcal{M}' \models \varphi(\overline{c}_{\tau}, d_{\tau \uparrow \beta}) \Leftrightarrow \tau(\beta) = 0.$$

Thus, $\mathcal{M}' \models \Sigma$.

Theorem 8 (INCOMPLETE). For any formula $\varphi(\overline{x}, \overline{y})$, the following are equivalent

- (1) $B_T(\varphi, \mathbb{N})$ holds.
- (2) $B_T(\varphi, I)$ holds for all orders I.
- (3) For all α an ordinal, $\Gamma_T(\varphi, \alpha)$ holds.
- (4) $\Gamma_T(\varphi,\omega)$ holds.

Proof. We will show $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (1)$.

 $(1) \Rightarrow (2)$. Suppose $B_T(\varphi, \mathbb{N})$ holds. Then there exists a model $\mathcal{M} \models T$ and sequences $\langle \overline{a}_i \mid i \in \mathbb{N} \rangle$ and $\langle \overline{b}_i \mid i \in \mathbb{N} \rangle$ such that for all $i, j \in \mathbb{N}$,

$$\mathcal{M} \models \varphi(\overline{a}_i, \overline{b}_i) \Leftrightarrow i < j.$$

By lemma 5, it is sufficient to show that $B_T(\varphi, k)$ holds for all $k \in \mathbb{N}$. Clearly $\overline{a}_0, \ldots, \overline{a}_{k-1}$ and $\overline{a}_0, \ldots, \overline{a}_{k-1}$ witness this.

 $(2) \Rightarrow (3)$. Clearly if $\beta < \alpha$ and $\Gamma_T(\varphi, \alpha)$ then $\Gamma_T(\varphi, \beta)$. Thus, it is sufficient to show the result for all limit ordinals, since any ordinal is less than some limit. Let α be any limit ordinal. Let $I = 2^{\alpha}$, the set of functions $\alpha \to 2$. Order I lexicographically, that is $\sigma < \tau$ iff $\sigma(\gamma) < \tau(\gamma)$ where γ is the least ordinal where $\sigma(\gamma) \neq \tau(\gamma)$. Equivalently, $\sigma < \tau$ if for some γ , we have $\sigma(\gamma) = \tau(\gamma)$ and $\sigma(\gamma) < \tau(\gamma)$.

By assumption, $B_T(\varphi, I)$ holds, so let $\mathcal{M} \models T$ and choose $\langle \overline{a}_i \mid i \in I \rangle$ and $\langle \overline{b}_i \mid i \in I \rangle$ from M such that

$$\mathcal{M} \models \varphi(\overline{a}_i, \overline{b}_j) \Leftrightarrow i < j.$$

Define $\iota: 2^{<\alpha} \to I$ by $\sigma \mapsto \sigma^{\smallfrown} 1000\ldots$ and define the tree $F: 2^{<\alpha} \to M$ by $\sigma \mapsto b_{\iota(\sigma)}$. We will show that this tree is a witness to $\Gamma_T(\varphi, \alpha)$. In particular, if $\sigma: \alpha \to 2$ is a branch through F, then we claim that for all $\beta < \alpha$,

$$\mathcal{M} \models \varphi(a_{\sigma}, F(\sigma | \beta)) \Leftrightarrow \sigma(\beta) = 0.$$

Let $\beta < \alpha$. First suppose $\sigma(\beta) = 0$. We have $\sigma \upharpoonright \beta = \iota(\sigma \upharpoonright \beta) \upharpoonright \beta$ and $\sigma(\beta) = 0 < 1 = \iota(\sigma \upharpoonright \beta)(\beta)$. Thus, $\sigma < \iota(\sigma \upharpoonright \beta)$. By construction, that means

$$\mathcal{M} \models \varphi(a_{\sigma}, b_{\iota(\sigma \upharpoonright \beta)}),$$

so $\mathcal{M} \models \varphi(a_{\sigma}, F(\sigma | \beta)).$

Next suppose $\sigma(\beta) = 1$. Then we have $\sigma(\beta + 1) = \iota(\sigma(\beta))(\beta + 1)$. Furthermore, for all $\gamma \geq \beta + 1$, we have $\iota(\sigma(\beta))(\gamma) = 0$. In particular, if ever $\iota(\sigma(\beta))(\gamma) \neq \sigma(\gamma)$ then $\iota(\sigma(\beta))(\gamma) < \sigma(\gamma)$, and so $\iota(\sigma(\beta))(\gamma) \leq \sigma(\gamma)$. Thus, by construction,

$$\mathcal{M} \not\models \varphi(a_{\sigma}, b_{\iota(\sigma \upharpoonright \beta)}),$$

so $\mathcal{M} \models \neg \varphi(a_{\sigma}, F(\sigma | \beta))$. Thus, the claim is shown.

- $(3) \Rightarrow (4)$ obvious.
- $(4) \Rightarrow (1)$ By lemma 5, it is sufficient to show that $B_T(\varphi, n)$ holds for all $n \in \mathbb{N}$. Fix $n \in \mathbb{N}$. Let $h_r = 2^{n-r+1} 2$. Notice that we have the recursive relation $h_{r+1} = h_r/2 1$. We will prove by induction on r that there exists an r-ladder a_1, \ldots, a_r and b_1, \ldots, b_r , a height h_r tree H, a set of branches $\{a_{\sigma} \mid \sigma \in 2^{h_r}\}$ and an index $1 \leq q \leq r$. INCOMPLETE

Theorem 9. The following are equivalent:

- (1) T is unstable.
- (2) There is an undefinable type over T.
- (3) There is a formula $\varphi(\overline{x}, \overline{y})$ satisfying $\Gamma_T(\varphi, \omega)$
- (4) There is an unstable formula φ over T.

Proof. $(1) \Rightarrow (2)$:

Suppose (2) is false. That is, all types are definable over T. Let $\lambda = |\mathcal{L}|$. We will show that T is 2^{λ} -stable. Let $\mathcal{M} \models T$ and let $A \subseteq M$ satisfy $|A| = 2^{\lambda}$. Since all types are definable, there is a distinct definition schema for each type in $S^{\mathcal{M}}(A)$, we have $|S^{\mathcal{M}}(A)|$ is at most the number of definition schemata over A. Each definition schema is a function from \mathcal{L} -formulas to \mathcal{L}_A -formulas. Thus,

$$|S^{\mathcal{M}}(A)| \leq |\operatorname{Form}(\mathcal{L}_A)|^{|\operatorname{Form}(\mathcal{L})|} = (|\mathcal{L}| + |A|)^{|\mathcal{L}|} = (\lambda + 2^{\lambda})^{\lambda} = 2^{\lambda \times \lambda} = 2^{\lambda}.$$

Thus, T is 2^{λ} -stable, and so (1) is also false.

 $(2) \Rightarrow (3)$:

Assume (3) is false. That is, $\Gamma_T(\varphi, \omega)$ does not hold for any φ . By lemma 7, we have that for all φ , there is a finite k such that $\Gamma_T(\varphi, k)$ does not hold.

Let $\mathcal{M} \models T$, let $A \subseteq M$, and let p be an arbitrary n-type over A. Our goal is to show that p is definable. For any $\varphi(\overline{x}, \overline{y})$ and any \mathcal{L}_A -formula θ in n free variables, $\mathcal{M} \models \gamma(\varphi, \theta, k) \Rightarrow \mathcal{M} \models \gamma(\varphi, k)^1$. Thus, for each θ there is a k such that $\mathcal{M} \not\models \gamma(\varphi, \theta, k)$. Let k be the least value for which there is a $\psi \in p$ such that $\mathcal{M} \not\models \gamma(\varphi, \psi, k)$, and fix some $\psi \in p$ witnessing this. Since p is a consistent type, and $\psi \in p$, there must be some $\overline{a} \in M^n$ with $\mathcal{M} \models \psi(\overline{a})$. In particular, k > 0.

For each $\overline{b} \in M^m$, let $\theta_{\overline{b}}(\overline{x}) = \psi(\overline{x}) \wedge \varphi(\overline{x}, \overline{b})$. Note that θ can be thought of as a single formula in n + m free variables. Define $d_p \varphi(\overline{y}) = \gamma(\varphi, \theta_{\overline{y}}, k - 1)$. We will show that d_p is a definition for p.

Let $\overline{b} \in A^m$. First suppose $\varphi(\overline{x}, \overline{b}) \in p$. Since both $\psi(\overline{x}) \in p$ and $\varphi(\overline{x}, \overline{b}) \in p$, we have $\theta_{\overline{b}}(\overline{x}) \in p$. By the minimality of k, we have $\mathcal{M} \models \gamma(\varphi, \theta_{\overline{b}}, k-1)$. Thus, $\mathcal{M} \models d_p \varphi(\overline{b})$.

Next suppose $\varphi(\overline{x}, \overline{b}) \notin p$. Then $\theta'_{\overline{b}}(\overline{x}) = \psi(\overline{x}) \land \neg \varphi(\overline{x}, \overline{b})$ is in p. Again, by the minimality of k, we have $\mathcal{M} \models \gamma(\varphi, \theta_{\overline{b}}, k-1)$. Suppose that also $\mathcal{M} \models \gamma(\varphi, \theta_{\overline{b}}, k-1)$. Then we can form a height k tree with root \overline{b} , the left tree from the witnesses to $\gamma(\varphi, \theta_{\overline{b}}, k-1)$, and the right tree from the witnesses to $\gamma(\varphi, \theta_{\overline{b}}, k-1)$. But that means $\gamma(\varphi, k)$ holds, which contradicts the definition of k. Thus, $\mathcal{M} \not\models \gamma(\varphi, \theta_{\overline{b}}, k-1)$, i.e. $\mathcal{M} \not\models d_p \varphi(\overline{b})$.

$$(3) \Rightarrow (4)$$
:

Let $\Gamma_T(\varphi, \omega)$ hold. Let λ be any cardinal. Let μ be the least cardinal such that $2^{\mu} > \lambda$. By Theorem 4, we have $\Gamma_T(\varphi, \mu)$ holds. Unpacking the definition of $\Gamma_T(\varphi, \mu)$, there is an $\mathcal{M} \models T$ and a height μ tree $f: 2^{<\mu} \to M^m$ such that for each branch $\tau \in 2^{\mu}$,

$$\Sigma_{\tau} = \{ \varphi(\overline{x}, f(\tau | \beta)) \mid \beta < \alpha, \tau(\beta) = 0 \} \cup \{ \neg \varphi(\overline{x}, f(\tau | \beta)) \mid \beta < \alpha, \tau(\beta) = 1 \}$$

is satisfiable in \mathcal{M} . For any $\tau \in 2^{\mu}$, we have Σ_{τ} is a partial n-type over the paramter set

$$B = \{ b \in f(\sigma) \mid \sigma \in 2^{<\mu} \}.$$

Furthermore, let $\tau, \tau' \in 2^{\mu}$ be distinct. Let $\beta < \mu$ be the minimal ordinal such that $\tau(\beta) \neq \tau'(\beta)$. Define $\sigma = \tau \upharpoonright \beta = \tau' \upharpoonright \beta$. We have $\varphi(\overline{x}, f(\sigma))$ is in one of Σ_{τ} and $\Sigma_{\tau'}$, while $\neg \varphi(\overline{x}, f(\sigma))$ is in the other. Thus, Σ_{τ} and $\Sigma_{\tau'}$ are inconsistent with each other. If for each $\tau \in 2^{\mu}$ we choose some complete type p_{τ} extending Σ_{τ} , then we get 2^{μ} distinct, complete types over B.

Now we determine the size of B. Each element of B comes from some tuple of size n in the tree f. Then

$$|B| \le n \times |2^{<\mu}| = |2^{<\mu}|.$$

We have

$$2^{<\mu} = \bigcup_{\alpha < \mu} 2^{\alpha},$$

 $^{^{1}\}gamma(\varphi,\theta,k)$ can be defined similarly as in proposition 3

$$|2^{<\mu}| \le \sum_{\alpha < \mu} 2^{|\alpha|}.$$

By construction, for all $\alpha < \mu$, we have $2^{|\alpha|} \le \lambda$. Also, $2^{\lambda} > \lambda$, we have $\mu \le \lambda$. Thus,

$$\sum_{\alpha<\mu} 2^{|\alpha|} \leq \sum_{\alpha<\mu} \lambda = \mu \times \lambda \leq \lambda^2 = \lambda.$$

We have shown T has $2^{\mu} > \lambda$ complete types over B, and $|B| = \lambda$. That means T is λ -unstable. Since λ was arbitrary, T is unstable.

 $(4) \Rightarrow (1)$:

Clearly if for each λ there is an $\mathcal{M} \models T$ and $A \subseteq M$ with $|A| = \lambda$ such that there are more than λ many φ -types, then there are more than λ types.